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Project Title 
A scalable deep representation learning framework to accelerate ab initio molecular dynamics 
simulations 
Project Synopsis (approx. 100 words) 
We motivate the problem of learning dynamics from ab initio molecular dynamics (AIMD) 
simulations within the framework of deep learning. One of the key challenges is how to optimally 
represent the atom coordinates for deep learning, because they must follow strict symmetry 
constraints (e.g translational, rotational and permutational symmetry). This is a non-trivial 
problem, because of the inherent complexity in capturing the many-body character of the atomic 
interactions and several physics-inspired strategies have been explored with varying degrees of 
success. We propose the problem of exploring various representation learning schemes (graphs, 
networks etc) to map the coordinates and utilize deep neural networks to model the AIMD 
dynamics. 
Identified Data-Science Collaborative Need (approx. 100 words) 
Representation learning is a rapidly growing field in data science, but has not been fully explored 
in the domain of AIMD. Traditionally, materials scientists have relied on their expertise in 
fingerprinting the intrinsic structure of the data. Although significant advancements have been 
made, it is often unclear whether some of the physics-inspired representations are indeed 
optimal. On the other hand, representing data in the form of networks and graphs (that are also 
differentiable) have been used in computer science for relational reasoning and modeling of 
complex and non-linear systems [1]. Desired is a principled approach towards representation 
learning for AIMD trajectories and, in turn, explore its potential in modeling the energies within 
the paradigm of a scalable deep neural network. 
Data Origin and Accesss 
We intend to use open source computational tools (e.g GPAW, Quantum ESPRESSO) to generate 
the required data for the proposed problem. We will share our data with the data science team. 
Project Description  (approx. 1.5 pages, plus figures and references; please describe data size, 

form, dimensionality, uncertainties, number of examples, etc.) 
Molecular dynamics is an integral tool in materials science through which we gain an 
understanding of various atomistic phenomena that span across multiple length and time-scales. 
The accuracies of these simulations are strongly dependent on the quality of force-fields that 
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describe the local interaction between different atoms. Further, they are built for specific 
materials systems and therefore, are not transferable. Although density functional theory (DFT) 
provides a higher level of accuracy on the forces and total energies, it is computationally 
expensive for large system sizes. There is a need to develop novel strategies that has the potential 
to learn the dynamics from high fidelity AIMD simulations and then apply it to rapidly predict the 
dynamics of realistic materials systems with significantly large system sizes. 

In this project, we propose to capture the complexities of the many-body interaction in 
AIMD simulations using a novel and scalable deep representation learning framework. Unlike 
earlier approaches [2-4], where the forces/energies are learned for static configurations, we 
propose to capture directly the dynamics the of the system, as depicted in Figure 1. Given the 
positions and velocities of N-atoms at a time-step ‘t’, the model should predict positions and 
velocities at the next time-step ‘t+1’. The prediction is only likely possible if the model captures 
correctly the complex many-body interactions between an atom and its local environment. 

We intend to generate large number of AIMD runs for clusters of elemental systems (for 
e.g Cu, Al, C, Ti, Fe) and intermetallics. The size of the clusters would be between 50 to 100 atoms.  
Randomly sampled pairs of sequential configurations (for time-step ‘t’ and ‘t+1’) would be then 
split into train, validation and test sets. The input would consist of the x,y and z coordinates of 
the atoms at a particular time step, atomic energies, and also the x,y and z components of the 
velocity for every atom at that time-step. The target would be the same set of properties but for 
the subsequent time-step.  In order to reduce the size of the model, one must also take advantage 
of the locality of atomic environment [7-10]. 

Our idea for a deep representation learning framework for AIMD was inspired from 
existing open-source projects [1,5,6], where graphs and network-like representations have been 
applied to dynamically model physical systems outside the materials science domain. For 
example, the “interaction network” approach of Battaglia et al [1], explicitly separates the 
reasoning of “relations” from the reasoning of “objects”. In the context of AIMD, “objects” refer 
to individual atoms while “relations” refers to the interaction between two or more different 
atoms. This separation allows the model to generalize between variable numbers of arbitrarily 
ordered objects and relations. As shown in Figure. 2, this workflow has shown great promise in 
reproducing the dynamical behavior of various physical systems. In our opinion, this project 
enables multiple opportunities and challenges that require extensive collaboration between data 
scientists and materials researchers. 
 

 
Figure 1. The objective of the model is to predict the positions (r) and velocities (v) of n-atoms 

at time-step ‘t+1’ given the positions and velocities at time-step ‘t’ 
 



 
Figure 2. The interaction network has shown promise in predicting the dynamics of different 
physical systems such as a n-body gravitational system (Columns 1-2) and a n-bouncing-ball 

system (Columns 3-4). Figure taken from Reference [1] 
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