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Data-driven Analysis of Correlations between Chemical Structure and Electrical Function at the 
Nanoscale  

The goal of this project is to accelerate our understanding of how chemical composition and 
nanoscale structure are related to properties like electrical conductivity and work function 
that ultimately give rise to materials with promising applications in energy harvesting and 
storage. This project will also establish nanoscale chemical mapping as an integral part of 
materials characterization.  We aim to develop software that will enable pixel-by-pixel analysis 
of multimodal images and as a result, enable the discovery of relationships between local 
chemical composition and electronic functions in materials on the nanoscale. We will examine 
synthetic image data, then use model polymer blends, and finish with new halide perovskite 
semiconductors.  

 I am seeking data scientists with backgrounds in dimensionality reduction, hyperspectral 
unmixing, and multivariate statistical learning techniques. We will utilize tools that provide 
physically meaningful results (like nonnegative independent component analysis and 
nonnegative matrix factorization) to determine the spectral components and fractional 
abundances of materials in hyperspectral image data. To analyze these results, we will use a 
Bayesian approach to both linear and nonlinear multivariate regression techniques such as 
multiple linear regression and multivariate adaptive regression splines. The project is also 
open to other techniques that team members believe will be insightful in understanding the 
relationship between chemical structure and electrical properties. Ultimately, we will 
incorporate these techniques into Pycroscopy, an existing open source, Python package 
currently under development by nanoscale imaging communities. 
 



Data Origin and Access (data must be available and sharable with data science teams – please 
        address: data source/origin, access privileges, sharing privileges) 

 
Project Description  (approx. 1.5 pages, plus figures and references; please describe data size, 

form, dimensionality, uncertainties, number of examples, etc.) 
 The central goal of this project is to develop an open source, distributable software 
package that will enable pixel-by-pixel analysis of multimodal images and subsequent discovery 
of correlations between local chemical composition and electronic functions in materials on the 
nanoscale. A recently developed scanning probe technique called photoinduced force 
microscopy has helped make nanoscale chemical maps easy to acquire.1 This project utilizes this 
advancement to accelerate our understanding of how chemical composition and structure are 
related to electrical properties that ultimately give rise to materials with promising applications 
in materials from solar cells to batteries. We will 
incorporate the software we create with 
Pycroscopy, an existing software package for 
image processing and scientific analysis 
currently under development by 
communities using nanoscale imaging 
techniques.2  
 To examine the relationships 
between chemical structure and electrical 
properties, we will look at three atomic force 
microscopy (AFM) data sets of varying 
complexities as shown in Figure 1. The 
synthetic data set contains simulated 
hyperspectral and functional images, the 
latter with a known relationship to the 
hyperspectral image. Both the polymer 
blend of poly(methyl methacrylate) (PMMA) 
and poly(3-hexylthiophene) (P3HT) and 

I prepared all samples and collected all images on an Asylum MFP3D Atomic Force Microscope 
(conductivity and potential maps) and Molecular Vista VistaScope (hyperspectral infrared 
maps). I have translators for proprietary files from both instruments that can be utilized to 
read the data into Python as a class. Both raw files and translators can be shared with the data 
science teams. 

Figure 1. Data sets of varying complexities to be used for 
discovering relationships between chemical structure and 
electrical properties on the nanoscale.  



methylammonium lead triiodide perovskite system contain a hyperspectral (~36 million 
spectroscopic points) and at least one electrically functional (conductivity and/or potential) 
image (~65 thousand points, each). The scope of this project can be divided into three main 
sections: 

1. Image Registration 
2. Dimensionality Reduction and Hyperspectral Unmixing   
3. Linear and Nonlinear Multivariate Regression  

each of which will include incorporating these functionalities into Pycroscopy with Python.  
Image Registration  
This aspect of the project will focus on writing wrapper functions in Python that will integrate 
capability to register images with Pycroscopy. 

In AFM-based techniques, a nanometer-scale probe is raster scanned over a micron-sized 
region while simultaneously measuring topography and a local property (e.g, electrical current 
or chemical signature) with nanometer scale resolution. Due to differences in tip orientation and 
torsion, piezo hysteresis, and instrument drift, even consecutive images from the same 
instrument on ostensibly the 
same physical location need to 
be aligned. Dipy3, an available 
Python package, can be used to 
implement affine 
transformations on the 
topography image to sufficiently 
align the functional maps as 
shown in Figure 2 for the 
polymer blend system. This 
capability will be incorporated 
with Pycroscopy, which does 
not yet have this functionality.  
Dimensionality Reduction and Hyperspectral Unmixing 
This part of the project will assess the applicability of nonnegative dimensionality reduction 
techniques and develop them for use on hyperspectral infrared images within Pycroscopy.  
  The hyperspectral images contain sub-diffraction limited infrared (IR) spectra, which can 
be thought of as a chemical fingerprint, at every pixel in a micron-scale image. The dimensionality 
of these images are 256 x 256 pixels with 559 spectral dimensions; each spectral dimension 
contains an intensity value associated with a wavenumber between 800 and 1800 cm-1. Since 
every molecule has distinct vibrational modes that manifest as peaks at particular wavenumbers, 
IR spectra can be used to characterize the composition of a material.  
 With hyperspectral infrared images of a material, it can be particularly insightful if we can 
determine the corresponding spectra of constituent materials, their fractional abundances and 
their relationship with correlated electrical properties. Principal Component Analysis (PCA) can 
be helpful in distinguishing insulating PMMA aggregates from the semiconducting P3HT matrix 

Figure 2. Hyperspectral and conductivity images aligned using Dipy’s 
affine transformation capabilities.   



in a blend as shown in Figure 3(a) and 
(b). Spectral signatures must be positive 
to align with physical reality but by the 
nature of PCA, the principal components 
(PCs) are not always meaningful 
endmember spectra (Figure 3 (c) and 
(d)).  This constraint makes nonnegative 
dimensionality reduction techniques 
such as nonnegative matrix factorization 
(NMF)4, nonnegative independent 
component analysis (ICA)5, and others of 
particular interest. While these 
techniques are suitable for simpler 
systems like the polymer blend, for 
materials with considerably more 
intermixed morphology and therefore 
more complex structure-function relationships, more novel techniques such as minimum volume 
constrained nonnegative matrix factorization6, used for highly mixed image data may be 
required. ICA, NMF, and various matrix factorization techniques can, in principle, be 
implemented using packages like scikit-learn,7 Python Matrix Factorization (PyMF)8, and several 
others. Many of these, however, have been in the alpha development stage for several years and 
even those that are current, are limited in capability.  
Linear and Nonlinear Multivariate Regression  
We will apply a Bayesian approach to linear and nonlinear multivariate regression techniques 
including multiple linear regression and multiple adaptive regression splines.   
  More importantly, we seek to understand the relationship between local chemical 
composition (the spectra of constituent materials and their fractional abundances) and function 
(a quantitative measure of a property). Prior work with multiple linear regression (MLR) where 
the first five principal components are regressed onto the current gives a model from which we 
can reasonably predict the current as shown in Figure 4. While qualitatively valid, the prediction 
from this initial 
approach does 
not capture 
intra-aggregate 
conductive 
domains (bright 
regions within 
dark aggregates 
in Figure 4a). To 
improve this 
prediction, we 
will turn to more general techniques such as multiple adaptive regression splines (MARS) which 
can flexibly model more sophisticated relationships by including nonlinearity and interaction 
terms.9 Incorporating prior information about the systems can also improve the models we 

Figure 3. (a) and (b) Principal Component Analysis loadings for 
the (c) first and (d) third principal components, respectively.  

Figure 4. (a) Current as predicted with a multiple linear regression model obtained by 
regressing the first five principal components onto the current. (b) Real current as 
measured using conductive AFM. (c) Error image obtained by subtracting the real from 
predicted current.  



develop; therefore, a Bayesian approach to these multivariate techniques may be more 
appropriate.10 We can utilize and build on existing packages to implement MLR (scikit-learn7), 
MARS (py-earth11, Orange12), and their Bayesian solution (PyMC13, emcee14, PyStan15). 
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