
MATDAT18: Materials and Data Science Hackathon 
 
Team Composition (2 people max.) 
 

Name Department Institution Email 

Yanjun Ma Physics and Astronomy West Virginia University yanjun.ma@mail.wvu.edu 

Cheng Cen Physics and Astronomy West Virginia University  Cheng.Cen@mail.wvu.edu 

 
Project Title 

 
Project Synopsis (approx. 100 words) 
 

 
Identified Data-Science Collaborative Need (approx. 100 words) 

  

Synthesis of Oxide Heterostructures by Design 
 

Oxide heterostructures provide a unique platform to deliver novel science and innovative 
applications that is not attainable in bulk constituents. The theoretical design of oxides with 
desired properties have proliferated in the past decade, driven by the rapid advances of 
computational techniques and deep-learning algorithms. In contrast, the synthesis of oxide 
heterostructures by design is still in its infancy. The PIs propose to devise a machine-learning 
algorithm to screen the synthesis parameters for novel oxide heterostructures produced by 
the pulsed laser deposition method, which will link “material by design” to “synthesis by 
design” and accelerate the throughput of new functional materials. 

1. The building of a proper text-mining method to identify the synthesis parameters in 
various publications and transform them into machine-readable data sets.  
 

2. The invention of a machine-learning algorithm that is able to identify key synthesis 
parameters as well as predict the probable values for these processing variables. 
 

3. The upgrade of the deep-learning algorithm to screen synthesis parameters for 
materials that have similar composition and/or structure but not synthesized yet. 
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The broad spectrum of mechanical, optical and electronic properties exhibited by oxides offers 
tremendous opportunities for science and technologies1-3. Owing to the dependence of 
properties on crystalline directions, it is often optimal to grow functional oxide thin films in 
particular directions to maximize film properties for a specific application. Pulsed laser deposition 
(PLD) technique is widely exploited for producing high quality oxide thin films4. The non-
equilibrium process involved in the PLD method, however, makes the design of synthesis routes 
difficult. To further advance the research on functional oxides, a comprehensive approach for 
computationally screening synthesis parameters via the PLD process across broad categories of 
oxide materials is in great demand.  
 
In this work, the PIs aim to accomplish this goal by the following approach:  

1. The first is to construct a text-mined synthesis database for all interested oxide systems 
such as ZnO/(MgZn)O, CaMnO3/CaRuO3, LaAlO3/SrTiO3, LaMnO3/SrMnO3, 
Y3Fe5O12/Gd3Ga5O12 and La2CoMnO6/SrTiO3. Open access online databases such as 
Google Scholar, Web of Science and PubMed can be utilized to locate relevant 
publications. In brief, the experimental method sections of journal articles should be 
processed automatically to extract synthesis information. For PLD method, the most 
critical parameters include laser intensity, substrate temperature, processing gas 
pressure, laser repetition rate and working distance between target and substrate, 
which form a 5-dimensional synthesis space for each material.  
 
To the best of the PIs’ knowledge, journal articles can be programmatically queried and 
downloaded using CrossRef search Application Programming Interface (API)5. Natural 
learning processing (NLP) algorithms6-8 can be exploited to convert articles into 

The synthesis parameters for oxide heterostructures are available in the literature from a 
plethora of publications as one can find from the database such as Google Scholar and Web of 
Science.  



machine-readable synthesis parameters. The PIs welcome any creative approach 
conceived by the data science team to accomplish this step.  

2. Once the database is established, statistical distribution of synthesis parameters for 
various materials can be investigated. For example, one can study the substrate 
temperature distributions for rock salts like MgO, perovskites like CaTiO3, spinels like 
MgAl2O4 and garnets like Y3Fe5O12. Another example to reveal further relations in the 
database is to obtain statistical information about synthesis parameters for materials on 
specific substrates such as perovskites on SrTiO3 and garnets on Gd3Ga5O12.  

3. Based on the statistical knowledge obtained in the above step, one can analyze the 
situation to identify the key factors that drive synthesis outcomes as well as to 
formulate a machine-learning model that allows virtual screening of key growth 
parameters. One possible solution is to inspect the probabilistic model learned by a 
decision tree and automatically select a predictive set of synthesis parameters that drive 
the behavior of the model as described in Ref 9. However, the PIs are willing to work 
with the data science team to invent a novel route to achieve this goal.  

4. One way to benchmark the model established in Step 3 against the known examples is 
as the following: 

a. By studying the synthesis database for perovskite materials (such as CaTiO3, 
SrTiO3 and BaTiO3), one can expect to extract information about key factors that 
influence the synthesis of single crystals of such structure.  

b. A machine-learned phase diagram for crystalline and non-crystalline phase can 
then be drawn. 

c. The result from Step b can be compared with the literature. For example, for 
LaAlO3/SrTiO3 system, both crystalline and amorphous LaAlO3 films have been 
produced experimentally, which can serve as a reference.  

5. After being trained with existing materials, the algorithm can be exploited to screen 
growth parameters for systems that do not exist in the database. One example can be 
LaMnO3/KTaO3: LaMnO3 layer is magnetic, and KTaO3 substrate hosts two-dimensional 
electron gas at the surface10. When these two materials meet each other, two-
dimensional spin-polarized electron gas may form at the interface.  

6. Based on the parameters predicted by the model, the PIs will carry out the synthesis 
experiments with the pulsed laser deposition facility at West Virginia University.   

7. After the sample is synthesized, the PIs will characterize its structural and physical 
properties with X-ray diffraction, Atomic Force Microscope and transport measurement 
facilities at West Virginia University. The investigation results will be shared with the 
data science team to refine the algorithm until the screened parameters can be 
confirmed by experiments. 

 
The success of this project will offer 1) a database containing aggregated synthesis information 
for most of the existing oxide heterostructures; 2) unique data-driven material informatics 
strategies that will guide the synthesis of new oxide heterostructures with novel functionalities 
as designed by computational approaches.  
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