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High Fidelity Universal Prediction of Bandgaps in Inorganic Materials 

Electronic bandgap plays a crucial role in material selection for many technologically important 
applications. Standard density functional theory (DFT) often incorrectly predicts the bandgap and 
this poses a significant problem for material screening in data-driven material discovery. Post-DFT 
theories such as hybrid functionals and GW method enable accurate prediction of bandgaps, but 
are computationally expensive for high-throughput applications. To remedy this situation, a 
machine learning based predictor trained on higher fidelity bandgaps with standard DFT 
bandgaps as one of the inputs is desired for materials across multiple crystal symmetries, 
chemical bonding types and elemental compositions. Such a predictor enables quick bandgap 
prediction for thousands of new materials waiting to be discovered in higher dimensional chemical 
spaces. 

Existing machine learning studies of bandgaps in materials are limited to a single class of 
materials with common crystal symmetry, fixed number of elements and composition ratios. 
Such studies have sufficient data within the narrow chemical space chosen and the input 
features have uniform shape/size. Our goal of building a universal machine learning model to 
predict bandgap for different classes of inorganic materials results in a dataset that is sparse 
for many classes of materials. Further, the number of elements in a structure can vary and this 
results in different sizes for inputs depending on the class of materials. An elegant machine 
learning approach that accounts for the irregular sizes of the input features as well as the 
data sparsity is required. 
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Electronic band structure plays a crucial role in material selection for many applications such as 
catalysis, photovoltaics, and radiation detection (scintillators).  One fundamental and important 
property of the band structure is bandgap which is the electronic energy range where no states are 
found and based on which materials are broadly classified into metals, semiconductors and 
insulators. Often the bandgap is engineered to tailor a material for a target application by varying 
the composition or by novel nano-synthesis techniques. Mature and accurate modeling tools based 
on density functional theory (DFT) and post-DFT theories enable avoidance of the costly 
experimental fabrication route and new materials are often tested in silico. Further, new materials 
can also be predicted in silico with the advent of ab initio material structure prediction algorithms1. 
These algorithms can explore the ternary, quaternary and higher dimensional chemical spaces that 
are huge and there are tens or possibly hundreds of thousands of new materials waiting to be 
discovered in those high dimensional chemical spaces. For in silico bandgap engineering to be 
effective, computationally predicted materials have to be screened with respect to required band 
structure properties for a target application.  
 
Standard DFT methods often incorrectly predict the bandgap and this poses a significant problem 
for material screening in data-driven material discovery. Post-DFT theories such as hybrid 
functionals and GW method enable accurate prediction of bandgaps, but are computationally 
expensive for high-throughput applications. To remedy this situation, a machine learning (ML) 
based bandgaps predictor trained on higher fidelity bandgaps with standard DFT bandgaps as input 
is desired. Such a predictor enables quick bandgap prediction for thousands of new materials 
lurking in higher dimensional chemical spaces. 
 
 

The target data is the bandgaps predicted with GLLB-sc functional4, which is obtained from 
Computational Materials Repository (https://cmr.fysik.dtu.dk/). Bandgaps predicted with PBE 
functional (standard DFT) are obtained from The Materials Project 
(www.materialsproject.org). These datasets are public and can be freely accessed/shared. The 
input feature data is the elemental properties such as atomic number and compound 
properties such as crystal symmetry which are either computed automatically or available 
universally. The input data is curated and preprocessed with scikit-learn. 

https://cmr.fysik.dtu.dk/
http://www.materialsproject.org/


Recently several independent machine learning (ML) models that use elemental properties as input 
features have been developed to predict the bandgaps in specific classes of materials2,3,4. However 
each of these models being inherently linear is limited to the specific class of materials from which 
the training data is sampled. Those models are not transferable to a different class of materials. ML 
models need careful selection of application and material specific input features, which entails 
rigorous engineering and in-depth domain knowledge. Redeveloping new ML models for each class 
of materials will then require huge effort and there could be redundancy in those models.  
 
The materials of interest for any target application could exhibit a wide range of structural and 
chemical properties. For example, various catalytic materials such as oxides, sulfides, and carbides 
each have distinct morphologies and chemical bonding. A single bandgap predictor that can work 
across such different types of materials will make it universal. By combining such predictor with 
predictors of other properties of interest for a target application, powerful screening tools can be 
built. Our ultimate objective is to develop ML models with only crystal structure descriptors 
including elemental composition, and elemental properties as inputs. However, information present 
in the standard DFT calculations including (incorrect) bandgaps is available at no additional cost 
after ab initio crystal structure prediction step. By utilizing such data, there is a possibility to train 
more robust ML models.  
 
Post-DFT based evaluation of bandgaps is too expensive even to build a training data set. Instead, 
bandgaps for nearly 2400 inorganic materials computed with GLLB-sc functional5 will be used to 
train ML models. This functional is shown to predict bandgaps that are comparable to those 
predicted with the costlier post-DFT methods with an uncertainty around 0.2 eV. Majority of the 
compounds in this dataset contain two to five elements and belong to sixty different 
crystallographic space groups. The input features to train the model include elemental properties 
such as atomic number, group number, etc., and compound properties such as lattice constants, 
crystal symmetry, etc. The dataset has been curated and preprocessed with scikit-learn, which 
includes transforming the feature space into a zero mean and unit variance data and hot encoding 
categorical features. After preprocessing, the input data has 165 derived features. 
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