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Project	Title	

	
Project	Synopsis	(approx.	100	words)	
	

	
Identified	Data-Science	Collaborative	Need	(approx.	100	words)	

Characterizing	Protein	Hydrophobicity	Using	High-Dimensional	Descriptors	

Protein	hydrophobicity	informs	its	interactions	and	assemblies.	However,	empirical	
approaches	for	describing	protein	hydrophobicity	using	low-dimensional	descriptors	have	
failed	to	capture	it	with	sufficient	accuracy.	Recent	work	has	explained	this	failure	by	
highlighting	that	protein	hydrophobicity	depends	sensitively	on	the	nanoscopic	topographical	
and	chemical	pattern	displayed	by	protein	surfaces.	Capturing	such	high	dimensional	protein	
hydrophobicity	will	require	a	combination	of	molecular	simulations	(with	enhanced	sampling	
approaches)	to	generate	the	requisite	data,	and	the	state-of-the-art	data	science	approaches	
to	capture	the	complex	functionality	present	in	the	data.	If	successful,	this	work	will	open	up	
applications	in	the	high-throughput	screening	of	ligands	for	drug	discovery	as	well	as	the	high-
throughput	prediction	of	protein	interaction	interfaces.	
	

Low	(<10)	-	dimensional	descriptors	have	failed	to	reliably	predict	protein	hydrophobicity.	An	
understanding	of	the	molecular	determinants	of	protein	hydrophobicity	and	the	development	
of	molecular	simulation	methods	for	characterizing	such	determinants,	along	with	advances	in	
high-performance	computing	have	opened	the	door	for	the	development	of	high	(>100)-
dimensional	descriptors	for	predicting	protein	hydrophobicity.	Deep	learning	appears	to	be	
well	suited	for	addressing	this	challenge.	Although	enhanced	sampling	molecular	simulation	
methods	can	generate	the	large	amounts	of	requisite	data,	efficiently	making	use	of	this	data	
to	construct	a	computationally	economical	model	for	capturing	protein	hydrophobicity	will	
require	expert	wielding	of	the	data	science	toolkit:	questions	pertaining	to	the	quality	of	data,	
the	smallest	number	of	dimensions	needed,	as	well	as	the	amount	of	training	data	that	will	be	
necessary	will	have	to	be	addressed.	



Data	Origin	and	Access	(data	must	be	available	and	sharable	with	data	science	teams	–	please	
	 							address:	data	source/origin,	access	privileges,	sharing	privileges)	

	
Project	Description		(approx.	1.5	pages,	plus	 figures	and	references;	please	describe	data	size,	

form,	dimensionality,	uncertainties,	number	of	examples,	etc.)	
	
Introduction	 and	Motivation	 The	 hydration	 and	 interactions	 of	 complex	 molecules,	 such	 as	
cavitands,	 dendrimers,	 drugs,	 and	 proteins,	 which	 display	 chemical	 and	 topographical	
heterogeneity	 at	 the	 nanoscale,	 play	 a	 central	 role	 in	 numerous	 phenomena,	 ranging	 from	
supramolecular	 host-guest	 chemistry	 to	 biomolecular	 recognition.	 The	 hydrophobic	 effect,	
which	 refers	 to	 the	 favorable	 interactions	 between	 non-polar	 moieties	 in	 water,	 plays	 an	
important	 role	 in	 the	 interactions	 and	 assemblies	 of	 such	 complex	 molecules.	 However,	
quantifying	the	hydrophobicity	of	such	molecules	in	manner	that	informs	their	interactions	has	
proven	 to	 be	 challenging.	 In	 particular,	 here	 we	 will	 focus	 on	 proteins	 as	 the	 archetypical	
heterogeneous	molecules,	and	tackle	the	challenge	of	predicting	their	hydrophobicity.	
	
Data	Dimensionality	 Challenge	Recent	work	 from	 our	 group	 and	 others	 has	 shown	 that	 the	
challenge	 in	 accurately	 characterizing	 protein	 hydrophobicity,	 or	 how	 unfavorable	 protein-
water	interactions	are,	stems	from	the	fact	that	proteins	disrupt	the	inherent	structure	of	water	
in	 countless	 different	 ways,	 depending	 not	 only	 on	 the	 chemistry	 of	 the	 underlying	 protein	
surface,	 but	 also	 on	 the	 precise	 topography	 and	 chemical	 pattern	 of	 amino	 acids.	 In	 other	
words,	 the	 chemical	 and	 topographical	 cues	 presented	 by	 the	 protein	 surface	 induce	 a	
collective,	 many-body	 response	 from	 water	 molecules,	 which	 is	 challenging	 to	 capture.	 This	
body	of	work	also	explains	why	protein	hydrophobicity	is	not	captured	reliably	by	approaches,	
such	 as	 hydropathy	 scales,	 which	 employ	 low-dimensional	 descriptors	 (e.g.,	 list	 of	 protein	
residues	near	protein	patch	of	interest).	
	
Data	 Quality	 Challenge	 All-atom	molecular	 dynamics	 simulations	 with	 explicitly	 represented	
waters	 are	 capable	 of	 generating	 the	 large	 amounts	 of	 data	 that	 would	 be	 necessary	 for	
uncovering	 the	 high-dimensional	 description	 of	 protein	 hydrophobicity.	 However,	 the	 data	

For	select	proteins	(number	of	proteins,	N	=	O(10)	to	begin	with),	the	positions	of	all	protein	
atoms	(number	of	protein	atoms,	S	is	roughly	200)	as	well	as	their	atom	types	will	serve	as	
input	(to	simulations	as	well	as	for	machine	learning).	This	data	will	be	obtained	from	the	
Protein	Data	Bank,	and	will	be	used	to	perform	biased	molecular	dynamics	(MD)	simulations,	
using	an	external	potential	that	seeks	to	systematically	displace	waters	from	the	protein	
hydration	shell.	Simulations	will	be	performed	for	M	=	10	–	20	potential	strengths,	and	for	
every	potential	strength,	the	number	of	waters	that	remain	in	the	individual	protein	atom	
hydration	shells	will	be	recorded.	Our	training	data	set	will	thus	have	dimensions	of	N	x	M	x	S,	
and	will	be	obtained	from	N	x	M	biased	MD	simulations.	The	data	and	will	be	shared	with	data	
science	teams	in	the	format	that	is	most	convenient.	
	



generated	 by	 equilibrium	 molecular	 simulations	 is	 not	 adequate	 to	 inform	 protein	
hydrophobicity.	Recent	work	has	shown	that	the	hydrophobicity	of	a	surface	is	manifest,	not	in	
average	quantities,	e.g.,	water	density	near	the	surface,	but	in	rare	fluctuations	away	from	the	
average;	 in	 particular,	 it	 is	 the	 statistics	 of	 low-density	 fluctuations,	 which	 result	 in	 the	
formation	 of	 a	 cavity	 near	 the	 surface,	 that	 captures	 its	 hydrophobicity.	 Because	 creating	 a	
cavity	adjacent	to	a	protein	disrupts	protein-water	interactions,	the	corresponding	free	energy	
also	 serves	 as	 an	 estimator	 of	 the	 strength	 of	 those	 interactions;	 the	 easier	 it	 is	 to	 displace	
interfacial	waters,	the	smaller	the	cavity	formation	free	energy,	and	the	more	hydrophobic	the	
protein	surface.	
	
Simulation	 Approach	 To	 characterize	 the	 strength	 of	 protein-water	 interactions	 or	 protein	
hydrophobicity	 in	 a	 way	 that	 captures	 the	 many-body	 water	 response	 and	 informs	 protein	
hydrophobicity,	we	perform	all-atom	protein	 simulations	 in	explicit	water,	 and	 systematically	
disrupt	 protein-water	 interactions	 by	 applying	 an	 unfavorable	 biasing	 potential,	φNV,	 which	
attempts	to	displace	waters	from	the	protein	hydration	shell;	here,	NV,	is	the	number	of	waters	
in	the	entire	protein	hydration	shell,	V.	The	response	of	the	hydration	waters	to	the	strength	of	
the	applied	potential,	φ,	contains	a	wealth	of	information,	including	the	free	energetic	cost	of	
disrupting	protein-water	interactions,	and	the	order	in	which	those	interactions	are	disrupted.	
In	particular,	 the	 regions	of	 the	protein	 that	 interact	weakly	with	water	 (hydrophobic)	dewet	
first	 (at	 low	φ),	whereas	those	that	are	highly	hydrophilic,	hold	on	to	waters	even	at	 large	φ.	
The	 collective	 water	 response	 obtained	 from	 such	 “φ-ensemble	 simulations”	 thus	 captures	
protein	hydrophobicity,	and	enables	the	prediction	of	protein	interactions.	
	
Data	Science	Approach	Deep	learning	provides	an	exciting	avenue	for	capturing	the	many-body	
response	 of	 protein	 hydration	 waters,	 and	 predicting	 the	 high-dimensional	 protein	
hydrophobicity.	 However,	 to	 successfully	 address	 the	 protein	 hydrophobicity	 challenge	 using	
deep	learning,	a	number	of	questions	that	bear	on	both	the	data	science	and	the	physics	of	the	
problem	will	first	need	to	be	addressed:	How	high-dimensional	does	the	descriptor	need	to	be?	
How	 much	 training	 data	 will	 be	 needed?	 How	 do	 we	 use	 enhanced	 sampling	 methods	 to	
efficiently	obtain	the	requisite	data?	
	
Description	of	Data	 In	 addition	 to	 the	molecular	 topology,	 the	positions	of	 all	 protein	atoms	
(number	of	 protein	 atoms,	 S	 is	 roughly	 200)	 as	well	 as	 their	 atom	 types	 (which	encode	non-
bonded	parameters,	such	LJ	sigma,	LJ	epsilon,	charge)	serve	as	input	to	molecular	simulations,	
and	will	serve	as	an	upper	bound	on	the	dimensionality	of	the	input	node.	For	select	proteins	
(number	of	proteins,	N	=	O(10)	to	begin	with),	this	data	will	be	obtained	from	the	Protein	Data	
Bank,	and	will	be	used	to	perform	the	φ-ensemble	simulations	described	above.	As	the	strength	
of	the	potential	is	increased	(number	of	φ-ensembles	that	will	be	simulated	per	protein,	M	=	10	
-	20),	protein	hydration	waters	are	systematically	displaced,	and	 for	every	potential	 strength,	
the	 number	 of	 waters	 that	 remain	 in	 the	 individual	 protein	 atom	 hydration	 shells	 will	 be	
recorded.	Our	 training	data	 set	will	 thus	have	dimensions	of	N	x	M	x	S,	and	will	be	obtained	
from	N	x	M	biased	MD	simulations.		
	
	


