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Using machine learning to enhance the efficiency of rare event sampling methods  

Our research focuses on studying phase transitions in aqueous systems such as gas hydrates nucleation 
and develop methods that facilitate these studies in molecular simulations. We have used advanced 
sampling techniques, specifically forward flux sampling combined with molecular dynamics to generate 
statistically relevant number of transition paths capturing the liquid-to-hydrate transition. In this process, 
we have generated significant amounts of data in the form of transition paths and configurations in the 
phase space between the metastable liquid and hydrate structure. In our analysis process, we have 
discovered that traditional methods of characterizing hydrate structures limit the information we can 
extract from this data. Therefore, we are interested in developing machine learning techniques to 
characterize these configurations and transition paths. This will enable us to discover structural features 
hidden through traditional analysis and gain further insights into the mechanisms of the transition.  
 



Identified Data-Science Collaborative Need (approx. 100 words) 

 
Data Origin and Access (data must be available and sharable with data science teams – please 

address: data source/origin, access privileges, sharing privileges) 

Sarupria group has significant experience in performing rare event simulations and in the field of 
nucleation in aqueous systems. We however, are not experts in machine learning algorithms and 
therefore, would like to participate in the MATDAT workshop. We hope to establish collaborations with 
experts in machine learning and related methodologies to assess, apply and develop machine learning 
techniques for structural determination. The sampling from our large-scale FFS calculations provide 
tremendous datasets for this pursuit. The approaches developed in the scope of our work have the 
potential to significantly improve the efficiency of sampling rare events in molecular simulations. 

The data we will use for this project was generated by Sarupria group at Clemson and we have complete 
access and ownership of the data. The data will comprise of the configurations generated from forward 
flux sampling calculations. These are output from GROMACS (MD simulation software) and are 
available both in the binary form and in ASCII-form. The data is hosted on the Clemson supercomputer 
and will be accessible to us. We will make it accessible to our data science partners as needed. We have 
the privileges to modify the data (i.e. convert formats etc if needed) as well as to share the data.  
 



Using machine learning to enhance the efficiency of rare event sampling methods

I. Project Description (approx. 1.5 pages, plus figures and references; please describe data size,
form, dimensionality, uncertainties, number of examples, etc.)

Our research focuses on developing computationally efficient methods to sample rare events. Rare events
refer to the class of events that have a low probability of occurance within accessible observation time but
have tremendous impact when they occur. In molecular simulations, an example of a rare event is nucleation
– birth of a new phase from a metastable phase. We use advanced sampling technique called Forward Flux
Sampling (FFS)1,2 to sample such rare events in molecular simulations. FFS breaks down the initial-to-final
state transition into a series of transitions between interfaces that define sub-regions of phase space between
the initial and final state. We have developed software that integrates the implementation of FFS with
the capabilities of Hadoop to perform large scale FFS calculations with computational and user efficiency
in high-performance computing environment.3,4 This has enabled us to perform some of the largest scale
FFS calculations on various processes namely crystallization of Lennard Jones like particles, heterogeneous
nucleation of ice on different surfaces and nucleation of gas hydrate structures from THF-like solute and
water solution5. However, in doing so we have discovered that although we have generated significant
amount of data the information we are able to extract from it is limited. We illustrate this by considering our
studies on gas hydrate nucleation.

Gas hydrates are crystalline structures formed by guest molecules entrapped in cages formed through
hydrogen bonding between water molecules (Fig 1). The molecular process through which this occurs
remains an open question. While several straightforward molecular dynamics (MD) simulations have been
performed to probe the mechanisms, their insights are limited due to the few nucleation events sampled. In
our study,5 we used FFS to generate a statistically relevant number of nucleation trajectories. Further, we
performed extensive committor probability analysis to characterize the transition state and hence, develop
insights into the reaction coordinates associated with this phase transition and the mechanism underlying
gas hydrate nucleation. Overall, we generated 1101 transition paths, 4189 configurations that are part of
the transition paths and 10,099 configurations that were sampled along the transition but did not make it
to the final state. Interestingly, we found that all the transition paths came from 8 initial configurations
(configurations at the first interface) even though we have 778 configurations at that interface. Even more
intriguing is the fact that of those 8 configurations, one spawned over 1021 transition paths.

The obvious and key question that arises from our results is – what makes the 8 initial configurations
reactive relative to the other 770 configurations? What is so special about that one configuration amongst
the 8 reactive configurations? (By most available methods to assess basin (i.e. initial) sampling, we find that
our basin sampling is sufficient.) To probe this, we visualized and characterized the initial configurations
using most available methods to identify hydrate-like structures. We evaluated the structures based on 33
order parameters and linear combinations thereof. Snapshots of our results are shown in Fig. 2. The values
of five different order parameters for all the 778 configurations at the first interface are shown. The reactive
configurations are shown in red and blue triangles, where the red triangle is the configuration that spawned
majority of the transition paths. Interestingly, no distinct feature of the reactive versus non-reactive configu-
rations was obtained. This highlights the need for methods that enable us to extract structural features from
a given dataset without prior knowledge. Such methods will truly enable us to maximize the information we
can extract from the dataset of configurations we have generated using FFS.

Motivated by this, the goal of our research is to develop approaches to be able to (i) identify key structural
features, which appear to remain hidden in the current hydrate structure identification methods. (ii) identify
and correlate those structural features to reactive versus non-reactive trajectories. Based on the previous
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work in related fields (specifically, ice nucleation6 and reaction coordinate determination7), we hypothesize
that machine learning techniques can provide us such approaches.

Geiger and Dellago6 recently demonstrated that properly trained artificial neural networks can be used
for structure detection. They were able to detect amorphous and crystalline structures with high accuracy
even in cases of complicated atomic arrangements, such as ice structures, for which traditional structure
detection can become unreliable. The strength of this approach is that several basic units of structural
fingerprints can be assessed for a given configuration enabling the search of subtle structural patterns. The
weakness however, is that it requires the knowledge of reference structures to train the neural network. This
is challenging in case of gas hydrates where the nucleation process is thought to occur in multiple steps
such as metastable solution to amorphous solid; and amorphous solid to crystalline structure.8–11 Recently,
Ferguson and coworkers12 have developed a methodology for structure determination without reference
structures for colloidal systems. We anticipate that similar approaches could be applied to systems such as
gas hydrates and ice nucleation.

Machine learning approaches have also been used to detect transition states and identify the best re-
action coordinate. Reaction coordinate determination remains one of the biggest challenge in rare event
simulations and most robust methods are computationally prohibitive. Ma and Dinner7 developed neural
network based method to determine the functional dependence of the committor probability (pB) on a set
of coordinates. The neural network used as input the data from transition paths sampled using transition
path sampling technique and calculations of pB performed on configurations selected from the transition
paths. Using this approach, the authors were able to screen through >5000 candidates to four key physical
variables to describe C7eq-to-↵R isomerization of the alanine dipeptide. We anticipate that we could use
similar approaches to assess reactive versus non-reactive configurations obtained from our FFS calculations
of gas hydrates. We have performed careful calculations of the committor probability for the configurations
obtained from FFS sampling. This provides us good dataset for developing machine learning methods to
differentiate reactive vs non-reactive configurations.

It is worth mentioning that we also have such FFS based data along with committor probability calcula-
tions for crystal nucleation in Lennard Jones like particles. These can provide us a simpler test case system
to begin developing the machine learning methods prior to testing them on more complex structures such
as gas hydrate crystals. The ability to identify hidden structural features and relate them to reactive versus
non-reactive trajectories through machine learning can provide a route to further enhancing the sampling
techniques for rare events. This will make it possible for us to study processes and transitions that continue
to remain beyond the reach of molecular simulations. This is the long-term goal of our research.
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Figure 1: Schematic illustrating structure of gas hydrates. Left panel: cages that form the basic building units of
hydrate crystal. Middle panel: Unit cell of a hydrate cyrstal structure. Right panel: sII hydrate structure. The red
spheres indicate water molecules adn the red bonds represent hydrogen bonds between the water molecules. Green
spheres indicate guest molecules.
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Figure 2: Value of several order parameters (OP) for all 778 configurations at initial interface. The configuration that
spawned majority of the transitions paths are shown as red triangle and the seven other configurations that spawned at
least one transition path are shown as blue triangles. All other configurations are shown with black points. DHOP35:
OP based on dihedral angle between water molecules; MCG3: OP based on mutually-coordinated guest molecules;
BC: OP based on tetrahedrality and 5-membered rings of water molecules; FSICAFS : OP based on planar rings the
water molecule participates in; FSICACC : OP based on number of complete cages the water molecule participates
in. The OP are used to characterized the water molecule as hydrate-like or not and then the largest cluster size of
hydrate-like water molecules is calculated. This is the reported y-axis value. Reproduced from Ref.5
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