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Machine Learning for Identification and Automated Analysis of 2D Supramolecular Self-
Assemblies at Surfaces from Scanning Tunneling Microscopy Data  

Molecular self-assembly at interfaces produce highly-ordered materials and are studied to 
gain fundamental understanding of intermolecular interactions and materials design. We 
analyze these systems with scanning tunneling microscopy to obtain real space imaging of 
molecular packing at surfaces. The supramolecular structure is derived from STM data by 
visual inspection, then sketching out packing models. Complex systems can be polymorphic 
and studies often require statistical analysis from many images, so human analysis is 
inefficient and often inaccurate. Machine learning offers an opportunity to generate packing 
models, reconcile those with molecular structure, and provide statistical analysis of their 
consistency with the experimental data. 

We would like to develop algorithms to: (1) recognize and measure periodic patterns in STM 
images, (2) develop feasible molecular packing models consistent with those patterns, (3) 
reconcile the packing structure with the molecular structure, (4) identify structural domain 
boundaries, and (5) compile statistical data from large sets of images on relative populations of 
packing polymorphs. Machine learning algorithms will be employed to improve packing model 
prediction. Bayesian data analysis will assess the quality of the models. These analyses will 
require identification of real molecular structures from data with noise and variation in data 
quality, which can be quantified in an uncertainty analysis.  
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Data input will be (1) STM image files, stored as 2D matrices of pixel (height) values, (2) 
molecular models, and (3) charge distribution models of molecules.  
The proposers have full access to the data and these can be shared easily through cloud 
storage (box/dropbox) or USB thumb drive transfer. A data set for a single experiment is on 
the order of 50-100 MB. We will be able to have 10-20 such data sets available at the 
hackathon and more available by cloud. 
 



 Self-assembly involves the spontaneous ordering of molecular components via non-
covalent (supramolecular) interactions to produce complex materials.1 Nature is filled with such 
structures (e.g., DNA, cell walls, crystals) that come together through various supramolecular 
interactions, including van der Waals (vdW) interactions, hydrogen bonding, and other 
electrostatic interactions. Compared with biological systems, synthetic (man-made) systems are 
much simpler, but rapid progress is being made in advancing complexity and predictive modeling 
of such structures.  
 Our experiments with two-dimensional (2D) supramolecular self-assembly using 
molecular resolution microscopy allow key insight into molecular packing, but need computer-
aided data reduction and packing model analysis. Self-assembly at solid surfaces is of great 
interest because the surface not only templates self-assembly to form materials that are not 
possible in solution but also enables scanning tunneling microscopy (STM) analysis which can 
visualize individual molecular components (Figure 1).2-4 These studies also lead toward next 
generation materials as the combination of surface support and STM analysis provides a means 
to develop nanomaterials from bottom-up strategies with applications ranging from electronics, 
photovoltaics, sensors, and separations.2, 5-10  
 Strategic and predictive molecular design for functional supramolecular layers is 
prerequisite to such bottom-up strategies and relies on a thorough understanding of the complex 
interplay of non-covalent interactions between molecular components. Through the use of STM, 
much has been learned by us and many other groups about the interplay of supramolecular 
interactions and other parameters (e.g., concentration and surface binding) on the structure and 
properties of self-assembled materials.2, 8-9  
 
Task 1. Machine learning algorithm to identify periodic structures in STM images 
 From STM imaging, spatial information and electronic features can be obtained. In order 
to translate this data into a molecular model, STM images are visually inspected to look for 
repeating patterns (see examples in Figure 1). We envision an automated machine learning 
algorithm that could search large sets (usually 50 images in an experiment taken over the course 
of a day) for repeating patterns that might indicate molecular ordering at a surface. For single 
image analysis, doing this analysis “by hand” is sufficient (Figure a-b), but in more complex 
systems, particularly those with polymorphic properties (Figure c-d), human analysis is a limiting 
factor.  
 
Task 2. Develop feasible packing models based on images and molecular structure 
 The next phase of the algorithm would use the molecular structure as one input and the 
spatial coordinates of the packing structures (unit cell vectors) from STM images as a second 
input. These would be used together to generate feasible models for the molecular packing. 
Quantum mechanical calculations are being developed by several research groups, but they are 
computationally expensive and time consuming.11 We find that students with molecular models 
can make good guesses about packing structure by hand based on their intuition about 
electrostatic and other interactions that would drive assembly. We envision an algorithm that 
could also generate structures in this empirical manner. A machine learning aspect of this would 
be to have the computer build up a data set of known structures with characteristics of their 
molecular properties to inform future structure estimations. This would be an extremely efficient 



computer algorithm for making initial predictions about structure. The best of those could be 
used as input into more expensive computational studies and would also serve to improve the 
determination of structures in future experiments.  
 
Task 3. Statistical analysis of molecular packing structures in STM data 
 Another major advance in STM analysis of supramolecular packing at surfaces will be the 
development of algorithms to measure domain sizes and domain boundary locations. After 
identification of repeating patterns (Task 1), the algorithm would compare multiple images to 
look for recurrence of the same patterns. Real STM images have tip artifacts that alter the 
contrast of the molecules, as well as noise and thermal drift. The algorithm would use a statistical 
analysis to build confidence estimations for the measurements. Comparing many images would 
allow the algorithm to identify recurring patterns, in spite of the unpredictable variations from 
image to image due to experimental artifacts and noise. Compiling statistics on the packing 
structures from multiple images will improve confidence in the measurements, but also provide 
valuable population data analysis, especially for systems with multiple polymorphs on the surface 
where the relative population of those is important to the thermodynamic analysis of the system. 
 
 STM images are two-dimensional matrices of pixel (height) data, typically 512 x 512 pixels. 
Each image is 1-3 MB in size. We typically record 20-50 images on a sample at various scan sizes 
from 20 nm x 20 nm to 500 nm x 500 nm. At these high resolution images, it is often possible to 
image molecular structures with sub-Angstrom resolution, allowing for submolecular resolution 
and identification of molecular orientation on the surface. As noted above, there can be 
significant variability due to changes in tip quality in these high resolution scans. 
 Based on a previous work on a computerized method to study 3-D crystal structures from 
X-ray scattering,12 we estimate that algorithms involved in feature selection, shape matching, 
object recognition, spatial statistics, and machine learning of QSPR models are required to 
analyze STM images, identify key features, and generate models. Additional algorithms involving 
Bayesian analysis, uncertainty analysis, and data reduction techniques are required to generate 
probabilities of different packing models and analyze large sets of STM data of varying quality. 
 
  



 
 

Figure 1. Examples of molecular resolution STM images with overlays of molecular packing 
models of three molecular systems at the solution-graphite interface: (a) alkoxybenzonitriles, (b) 
tricarbazolo triazolophane macrocycles,9 (c-d) two possible models of heteroaryleneethynylenes. 
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