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Machine-learned model for accelerating discovery of photocatalysts 

Efficiently converting abundant solar energy into synthetic chemical fuels is of significant 
research interest for decades. Utilizing modern computational methods such as density 
functional theory enables computational screening of novel photocatalytic materials.   
However, predicting band edge alignment of thousands of well-equilibrated photocatalysts 
in aqueous environments is exceptionally demanding. Therefore, the goal of this project is to 
develop a statistically learned regression model that can make rapid and accurate 
predictions of valence band edges using physically intuitive properties of neutral elements. 
The developed model would not only serve as a key screening tier in the high-throughput 
pipeline for searching photocatalysts but will also elucidate the correlation between the 
atomic and electronic properties in these compounds. 
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Project Description  (approx. 1.5 pages, plus figures and references; please describe data size, 

form, dimensionality, uncertainties, number of examples, etc.) 
 

The production of hydrogen fuels from water splitting process has the potential to revolutionize 

the generation of electric power for transportation and residential applications. Hydrogen is a 

sustainable energy carrier whose catalytic reaction with oxygen generates electrical energy and 

heat without emitting carbon dioxide. Wide band-gap semiconductors with band edge positions 

aligned to the energy levels of water and with optical absorption compatible with the solar 

spectrum can enable the splitting of water molecules and the production of hydrogen fuels. One 

such material is SrTiO3, which belongs to the materials family of cubic perovskite oxides having 

generic chemical formula ABO3. These materials exhibit a wide range of attractive 

physicochemical properties, providing a vast combinatorial space for investigating new 

photocatalytic materials. Yet, only few cubic perovskite compounds have been discovered, which 

The initial structural information for photocatalytic materials belonging to the perovskite oxide 
family can be accessed through the database of the Materials Project.1 The structural 
parameters and band edge positions in aqueous solutions are computed using open-source 
quantum-mechanical QUANTUM-ESPRESSO software with newly developed modules to 
simulate the influence of the surrounding chemical environment at low cost.2,3 The open-source 
high-throughput infrastructure AiiDA will be employed to manage, record, and disseminate the 
database generated.4 Data will be made available in json format as generated by AiiDA and 
sharable via secure online cloud services such as BOX.  Materials science team members and 
data science team members will have privileges to manage, modify, upload and download the 
data. 



fulfill the simultaneous requirements of chemical stability, band edge alignment, and optical 

absorbance for photocatalytic applications.  

 

The development of high-throughput combinatorial explorations based on density-functional 

theory (DFT) has enabled materials scientists to predict relevant photocatalytic features over 

extensive chemical spaces. Progress have been made in predicting new battery materials5, energy 

storage polymer nanocomposites6, solar fuels photoanode materials7, to name a few. In spite of 

the predictive power of DFT, the computational screening of certain materials properties at the 

high-throughput level is exceptionally demanding. In the case of the rational design of 

photocatalytic materials, predicting valence band edges in aqueous environments is a critical tier 

of the high-throughput pipeline but often requires several thousands of optimized atomic 

geometries with strict convergence thresholds for accurate energies and interatomic forces. 

 

Therefore, the goal of this project is to develop a statistically learned regression model that can 

make rapid and accurate predictions of band edges (in particular, the lowest valence band edges). 

Sample band edges are extracted from 500 randomly selected structures that are well equilibrated 

using self-consistent continuum solvation (SCCS) methods.3 The sample size can be expanded 

with further DFT calculations. A range of atomic properties of neutral elements are selected as 

descriptors, which include but are not limited to electronegativity, ionization potential, highest 

and lowest occupied atomic level, valence orbital radii8, and bond order9. The learned model will 

serve as a preselector that sieves desirable candidates from more than 2,000 cubic perovskite 

structures. Finally, the verified band edges will be computed on the surviving candidates to 

validate the accuracy of the regression and deliver the final candidate compound. 

 

Fig 2. Symmetric construction of SrTiO3 slabs using the implicit self-consistent continuum solvation method under the 

framework of first-principle calculations. The color gradient region corresponds to the simplified representation of the 

surrounding chemical environment. 
 

Fig 1. SrTiO3 is a perovskite oxide that 
serves as an important reference for 
producing hydrogen fuels by splitting 
water molecules thanks to its superior 
photocatalytic activity. The green and 
red spheres represent strontium and 
oxygen, respectively. Titanium sits in 
the center of the octahedron. 



The newly proposed model will deliver a robust selection scheme to explore the entire chemical 

space of perovskite structures. This model will not only serve as a crucial tier in the high-

throughput pipeline for searching perovskite photocatalysts, but it will also deepen our chemical 

insights of the complex relations between the atomic and electronic properties in these 

compounds. 
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