
MATDAT18: Materials and Data Science Hackathon 
 
Team Composition (2 people max.) 
 

Name Department Institution Email 
MERT SENGUL Materials Science 

and Engineering 
Pennsylvania State 
University 

mys12@psu.edu 

 
Project Title 

 
Project Synopsis (approx. 100 words) 
 

 
Identified Data-Science Collaborative Need (approx. 100 words) 

 
Data Origin and Access (data must be available and sharable with data science teams – please 

Development of a data-driven method to predict ReaxFF force field parameters. 

The optimization of force field parameters is critical during the development of the 
ReaxFF potential. The initial parameter values in optimization process affects the quality 
of the converged force field and time required for this process. This project intends to 
develop a data-driven method to predict initial force field parameters to be used during 
the optimization of the ReaxFF potential. The target is to use the reference values (e.g. 
bond length, partial charges etc.) as inputs for prediction. The goal is to decrease the 
force field optimization time and increase the force field quality by a better selection of 
initial parameter values. 
 
 
 

The ReaxFF force field includes approximately 100 parameters for each atom type to 
define the inter and intra-molecular interactions between them. Each parameter has 
different effects on these interactions and there is a correlation between most of the 
parameters. There is a need of a method that can learn the relationship between force 
field parameters and molecular properties. The method will make predictions for the 
parameters of a force field when the molecular property values for specified molecular 
geometries are known.  
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Project Description  (approx. 1.5 pages, plus figures and references; please describe data size, 

form, dimensionality, uncertainties, number of examples, etc.) 
 
Atomistic simulations have been used to determine structural and thermodynamic 
properties of crystalline, glass or liquid systems. The quantum mechanics (QM) based 
atomistic simulation methods have been commonly used to investigate the reactions in 
materials science. The QM methods provide accurate energies, charges and reaction 
pathways. However, simulation times and sizes are limited due to high computational 
cost, which is the motivation behind the development of empirical potentials. These 
potentials provide fast access to forces and, in turn, dynamical evolution. However, due 
to unalterable connectivity between atoms, traditional empirical potentials are incapable 
of modeling the evolution of systems during reactive events.  
 
The ReaxFF is a reactive force field, capable of modeling large atomistic systems 
including reactive events for long simulation times at a wide range of temperature values. 
The ReaxFF has proven itself to be reliable with its large user population and 
through around 700 publications in literature 1, 2. The ReaxFF consists of 
approximately 100 parameters per element type, and the force field parameters are 
grouped into six sections (Figure 1A). These sections are (number of parameters in 
parentheses): 1) General parameters (34), 2) Atom parameters (21), 3) Bond parameters 
(15), 4) Off-Diagonal Terms (6), 5) Valence angle parameters (7), 6) Torsion angle 
parameters (5). The inter and intra-atomic interactions are defined by these parameters. 
The parameters are optimized to reproduce reference values, which are molecular 
properties (e.g. bond lengths, bond angles, charges and energies etc.) of reference 
systems (Figure 1B). The reference values are obtained by QM methods or experiments, 
and are compared with those generated by the ReaxFF during the optimization process. 
The goal of the parameter optimization is to search for a parameter value in a defined 
interval, until the error defined in Equation 1 is minimized.   
 

The training data set is composed of learning and testing parts. The data in the testing 
part consists of already developed and verified values, and those in the learning part is 
generated by atomistic simulations. The learning data consists of different combination 
of parameters and corresponding molecular properties, thus has the information about 
the effect of change in each parameter to molecular properties. We will make a series 
of published ReaxFF training sets available to the data science team. 
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where the denominator is the difference between the reference value and the ReaxFF 
generated value for molecular property, and the numerator is the relative weight of the 
molecular property in optimization. The parameter optimization procedure is an iterative 
process and for each cycle, it is done by a sequential search over all parameters. Because 
most of the parameters are correlated, iteration continues until the error converges. In 
each cycle, one of the parameters is selected and optimized by fitting a parabolic function 
to three data points. One of these data points is the initial parameter value, and the other 
two points are the deviations from the initial value in two directions. The fitted parabola is 
minimized to obtain the optimized parameter value. The cycling terminates once the 
optimization of all parameters is complete.  
 

 
 
Figure 1. The representation of the training data set. (A) The subsections of a typical the ReaxFF force field. (B)(Left) 
Some examples for reference geometries that are used to optimize the force field parameters. Atom type-Color: A-
Blue, B-Red, C-Brown. The force field parameters are optimized to reproduce the reference values of molecular 
properties for each reference molecule. (Right) Some examples of molecular properties. 
 
In order to obtain a good force field, the force field parameter landscape should be 
explored thoroughly, but, this results in longer optimization times. In order to decrease 
the optimization time required for convergence of parameters, the parameter scan interval 
can be decreased. However, this limits the range and results in local convergence. For 
example, for identical reference systems, two different combinations of parameters might 
reproduce the same molecular properties. However, a limited scan of parameter space 



detects only one of the combinations as the optimized force field. A solution to this 
problem without sacrificing from the optimization time and accuracy would be to start with 
initial parameters that can reproduce molecular property values close to reference values. 
A data-driven learning method which can unveil the relation between force field 
parameters, and the properties of different molecular geometries could accomplish 
this goal. 
 
The collaboration involves the development of the data-driven method by data 
science team and the provision of the training data set by materials science team. 
The training data set is composed of learning and testing parts. The testing part of the 
data set has the same structure with the learning part, but the data are from optimized 
and verified values from past studies. The learning part consists of two sections. The first 
section is a set of combinations of different force field parameter values in defined 
parameter-specific intervals. The second section is a set of molecular property values 
computed for different molecular geometries by using each of the force field combinations 
in the first section. As can be seen in Figure 1B, there are several possible different 
molecular geometries composed of three different atom types and these molecular 
geometries are grouped into subsections depending on the number of atoms in the 
reference system. For this study three different atom types are used and it can be 
extended in the future.  
 
The planned size for the learning part of the training set is approximately ten 
thousand different force fields and corresponding molecular properties computed 
for twenty different molecular geometries. Because both sections of the learning part 
are composed of subsections, this sectioned structure enables the ability to adjust the 
training set size. For example, the number of reference molecules or the number of 
molecular properties for each reference molecule can be increased or decreased, or 
some of the force field parameters can be kept constant. These adjustments can be 
done with the assistance of materials science team according to the requirements 
of the methods applied by data science team.  
 
Improvement in the ReaxFF force field optimization will be beneficial to all users in the 
literature to develop or modify the force fields in line with requirements. Depending on 
the results obtained by data science team, this study can be extended in the future 
in two ways: First, the method can be used for optimization, or can be combined with 
other advanced optimization methods applied to the ReaxFF such as genetic algorithm 3, 
Monte Carlo algorithm 4 to enhance them. Second, the method can be modified to track 
the error evolution with the alteration of the force field parameters, which will improve the 
parameter search process used in optimization procedures. 
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