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High Throughput Materials Discovery Conventional machine learning is a limiting factor
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» Bandgap needs to be predicted for
thousands of candidate materials
simulated in silico for functional
applications

> Accurat_e bandgap calculations are A AB.ABC., .. Number of elements from 1 to 6
expensive XTy T Xy T : . .
with varying compositions |
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Data Specifics

» Bandgap data for 6000 compounds (density
functional theory computation)

»  Crystal structure data for the compounds as
well as the elemental properties

Target

»  Predict bandgap in inorganic materials with
aMAE<0.3eV

Model Details

»  Hybrid model consisting of RNN for
variable number of features and FF-DNN
for fixed number features of the crystal

»  The model uses hot-encoded elemental
information and the chemical knowledge
fed to the model is kept at a minimum

»  From material science point of view, the

model is primarily dependent on local
coordination environments
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»  Accuracy of MAE ~ 0.45 eV on test data (tantalizingly close!)

Improving Performance

Inputting additional features to the model can bring the target accuracy closer to desired 0.3 eV.

» Different chemical properties can serve as distinct data representations for elements. We can try out
them in a iterative fashion and find out which properties are better suited for the task at hand
(equivalent to feature engineering, which we were hoping to avoid).

» Training the model on bigger datasets is another option. This will be pursued if we can’t further improve

the accuracy with the above two approaches.
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